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Abstract The nuclear matrix plays an important role in the functional organization of the nucleus in part by locally
concentrating regulatory factors involved in nucleic acid metabolism. A number of nuclear regulatory proteins initially
identi®ed due to their involvement in human cancer are localized to discrete nuclear matrix-attached foci and correct
nuclear partitioning likely plays a role in their function. Two such examples are promyelocytic leukemia (PML) and
acute myelogenous leukemia-1 (AML-1; Runx1). PML, the target of the t(15;17) in acute PML, is localized to PML
nuclear bodies (also termed Nuclear Domain 10 and PML oncogenic domains), a nuclear matrix-associated body whose
function appears to be quite complex, with probable roles in cancer, apoptosis, and in acute viral infections. In t(15;17)-
containing leukemic cells, the PML nuclear bodies are disrupted, but reform when the leukemic cells are induced to
differentiate in the presence of all-trans retinoic acid. AML1 (RUNX1) is a key regulator of hematopoietic differentiation
and AML1 proteins are found in nuclear compartments that re¯ect their roles in transcriptional activation and repression.
The t(8;21), associated with AML, results in a chimeric transcription factor, AML-1/ETO (eight twenty one), that remains
attached to the nuclear matrix through targeting signals contained in the ETO protein. When co-expressed, ETO and
AML-1/ETO co-localize to a nuclear compartment distinct from that of AML1 or PML nuclear bodies. Interestingly,
enforced expression of ETO or AML-1/ETO changes the average number of PML nuclear bodies per cell. Thus,
chromosomal translocations involving AML1 result in altered nuclear traf®cking of the transcription factor as well as
other changes to the nuclear architecture. J. Cell. Biochem. Suppl. 35:93±98, 2000. ß 2001 Wiley-Liss, Inc.
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In the past 30 years the view of the nucleus as
composed of nucleoplasm and chromatin has
evolved as ordered structures such as the nuc-
lear matrix were identi®ed [Berezney and
Coffey, 1974]. Advances in light and electron
microscopy techniques, coupled with the locali-
zation of individual proteins has revealed that
the nucleus is an organized structure and many
nuclear proteins have speci®c sub-nuclear add-
resses [reviewed in Cardoso and Leonhardt,
1998; Lamond and Earnshaw, 1998]. The nu-
clear matrix, the non-chromatin nuclear scaf-
folding, is an integral player in the organization

of structure and function in the nucleus per-
forming regulatory roles in DNA replication,
transcription, and RNA processing by locally
concentrating regulatory factors [reviewed in
Strouboulis and Wolffe, 1996; Cardoso and
Leonhardt, 1998; Stein et al., 1999]. In cancer-
ous cells, there are marked changes in the stru-
cture, size and internal organization of the
nuclei [reviewed in Nickerson, 1998]. These
changes may be the result of direct changes in
the nuclear matrix and/or sub-nuclear localiza-
tion of regulatory proteins. Because nucleic acid
metabolism is organized through DNA and
protein contacts with the nuclear matrix, dis-
ruption in nuclear architecture can affect the
assembly of regulatory protein complexes req-
uired for correct gene expression [Stein et al.,
1999].

A number of nuclear proteins initially identi-
®ed due to their involvement in human cancer
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are localized to discrete nuclear matrix-
attached foci. Two such examples are promyelo-
cytic leukemia (PML) and acute myelogenous
leukemia-1; (AML-1; Runx1) [de The et al.,
1990; Miyoshi et al., 1991]. PML, the target of
the t(15;17) in acute promyelocytic leukemia
(APL), is localized to PML nuclear bodies (also
termed Nuclear Domain 10 and PML oncogenic
domains), a nuclear matrix-associated body
whose function appears to be quite complex,
with probable roles in cancer, apoptosis, and in
acute viral infections [reviewed in Melnick and
Licht, 1999; Maul et al., 2000]. The AML1
(RUNX) family of transcription factors consists
of three members all sharing structural and
functional similarity with the Drosophila pro-
tein, Runt [reviewed in Speck and Stacy, 1995;
Lutterbach and Hiebert, 2000]. These proteins
contain a nuclear matrix-targeting signal
(NMTS) that directs AML1 proteins to nuclear
matrix-associated domains [Zeng et al., 1997].
AML1 (RUNX1) is a key regulator of hemato-
poietic differentiation and the gene is a frequent
target of chromosomal rearrangements in acute
leukemias [reviewed in Speck and Stacy, 1995;
Lutterbach and Hiebert, 2000]. Chromosomal
translocations involving PML and AML1 result
in altered nuclear traf®cking of these important
regulatory factors as well as other changes to
the nuclear architecture. This review will focus
on the latest ®ndings concerning the appropri-
ate traf®cking of transcription regulatory fac-
tors and their disruption in acute leukemia.

PML Nuclear Bodies

PML is a member of the RING-B-Box-Coiled-
coil (RBCC) family of proteins and functions as a
growth suppressor [Reddy et al., 1992; Le et al.,
1996]. PML localizes to a discrete set of sub-
nuclear bodies that appear as speckles under
immuno¯uorescence microscopy [Dyck et al.,
1994; Weis et al., 1994]. The properties and
assembly of PML nuclear bodies have been
recently reviewed [Maul et al., 2000] and will
only be brie¯y discussed here. The ring ®nger/B-
box region is involved in localization of PML into
nuclear bodies and mutations in critical cys-
teine residues in the ring ®nger abolish proper
localization and growth suppression [reviewed
in Maul et al., 2000]. The typical mammalian
nucleus contains 10±20 PML nuclear bodies of
varying size (0.3±1.0 mm) [reviewed in Maul
et al., 2000]. A number of cellular insults alter
the number and distribution of PML nuclear

bodies including heat shock, viral infection, and
malignant transformation [Melnick and Licht,
1999]. In particular, there is interest in under-
standing how and why PML nuclear bodies
undergo alterations in cancer.

Several proteins are known to co-localize to
PML nuclear bodies including Sp100, Sp110,
and Sp140, SUMO-1/PIC1, and Daxx, among
others [reviewed in Maul et al., 2000]. SUMO-1
is a small ubiquitin-related protein, modifying
PML and Sp100 [Sternsdorf et al., 1997; revie-
wed in Maul et al., 2000]. The Sp100 proteins
are a group of closely related transcriptional
regulators. For example, a Sp110-DNA binding
domain fusion was demonstrated to activate
transcription of a reporter gene [Bloch et al.,
2000]. Moreover, Sp110 enhanced all-trans
retinoic acid (ATRA)-mediated expression of a
reporter gene containing a retinoic acid res-
ponse element [Bloch et al., 2000]. Daxx was
cloned as an enhancer of Fas-mediated apopto-
sis [Kiriakidou et al., 1997; Yang et al., 1997].
Interestingly, Daxx is found localized to PML
nuclear bodies likely through direct interac-
tions with PML [Zhong et al., 2000]. Daxx asso-
ciation with PML nuclear bodies has been
linked to its ability to enhance Fas-induced cell
death [Torii et al., 1999; Zhong et al., 2000].
Recently, Daxx was reported to be a repressor of
PAX3 and to interact with ETS1 to repress
ETS1 target genes [Hollenbach et al., 1999; Li
et al., 2000]. Therefore, the composition of the
PML nuclear body is complex, housing both
transcriptional activators and repressors whose
activity may depend on their subnuclear locali-
zation.

Studies performed in PMLÿ/ÿ MEFs demon-
strated that PML is required for nuclear body
formation and integrity [Zhong et al., 2000]. In
the absence of PML, Sp100, Daxx, and SUMO-1
all fail to accumulate to PML nuclear bodies
[Zhong et al., 2000]. The PML protein is
SUMOylated at three lysine residues and the
role of SUMOylation on PML nuclear body for-
mation has been investigated. Whereas the
SUMOylated form of PML is tightly associated
with the nuclear matrix, the unmodi®ed form is
not. A PML protein that can not be SUMOy-
lated, 3M-PML, forms fewer nuclear bodies on
average that does wild-type PML in PMLÿ/ÿ

MEFs, suggesting that SUMOylation is an
intra-nuclear targeting modi®cation for PML
to localize to nuclear bodies [Zhong et al., 2000].
Further, Daxx accumulation at PML nuclear
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bodies requires that PML be SUMOylated
[Ishov et al., 1999; Maul et al., 2000].

In t(15;17)-containing acute promyelocytic
leukemia, PML is fused to the retinoic acid
receptor-a protein (RARa), and the resultant
PML-RARa protein disrupts PML nuclear
bodies and redistributes their components into
smaller microspeckles [de The et al., 1991; Weis
et al., 1994]. ATRA treatment of t(15;17)-
containing cells results in degradation of PML-
RARa, the reformation of PML bodies and the
differentiation of the leukemic cells [reviewed
in Melnick and Licht, 1999]. Likewise, arsenic
trioxide (As2O3), which induces clinical remis-
sion of APL in ATRA resistant patients, causes
a rapid reformation of PML bodies [Zhu et al.,
1997; Zhang et al., 2000].

AML (RUNX) Proteins are Directed to Functional
Subnuclear Compartments

AML-1B is the largest splice variant of AML-1
[reviewed in Lutterbach and Hiebert, 2000] and
can activate and repress transcription through
protein contacts. AML-1B attaches to the nuc-
lear matrix though a 31 amino acid peptide, the
nuclear matrix-targeting signal (NMTS), resid-
ing in the C-terminus [Zeng et al., 1997]. The
NMTS is distinct from the nuclear localization
signal (NLS) and is suf®cient to direct a hetero-
logous nuclear protein to the matrix [Zeng et al.,
1997]. The crystal structure of the NMTS was
recently determined to 2.7 A resolution by X-ray
crystallography. The NMTS forms a ®nger-
shaped loop region (loop I), a hinge-shaped
glycine rich turn (GIGIG), and a b-strand
(Strand II) [Tang et al., 1999]. The GIGIG may
permit rotation between Loop I and Strand II to
promote attachment to the nuclear matrix
[Tang et al., 1999]. The NMTS is conserved
within the AML1 family, all of which are atta-
ched to the nuclear matrix [Zeng et al., 1997],
suggesting that sub-nuclear localization is
critical for the function of these factors.

AML-1B localized to a few prominent sub-
nuclear foci and smaller evenly distributed foci
that co-localized with a subset of RNA polymer-
ase II0. By contrast, a mutant, AML-1B L-D 148,
that failed to bind to DNA or to CBFb, the AML-
1 heterodimeric partner, failed to co-localize
with RNA polymerase II0 [Zeng et al., 1998].
Moreover, inhibition of transcription with acti-
nomycin D blocked co-localization of AML-1B
with RNA polymerase II0. Thus, proper nuclear
targeting, promoter recognition, and recruit-

ment of RNA polymerase II0 are linked. The
AML-1B foci did not overlap with nuclear speck-
les containing SC35, which de®nes bodies that
are highly enriched in RNA splicing factors
[Zeng et al., 1998]. Because only a subset of
AML-1B is associated with RNA polymerase II0,
matrix attachment alone is not suf®cient to
support AML-1B driven transcriptional activa-
tion, although the NMTS is required for some
transcriptional activation functions [Zeng et al.,
1998].

The RUNX family of proteins can also repress
transcription through protein contacts with the
mSin3 and Groucho/TLE co-repressors [re-
viewed in Lutterbach and Hiebert, 2000].
RUNX proteins contain a conserved C-terminal
VWRPY motif that mediates the interaction
with the Groucho/TLE repressors [reviewed in
Lutterbach and Hiebert, 2000]. The VWRPY
motif is required for repression of the multidrug
resistance promoter and AML-1 cooperates
with LEF to repress transcription by binding
Groucho [Levanon et al., 1998]. TLE-1 and TLE-
2 proteins exhibit a punctate distribution throu-
ghout the nucleus and are nuclear matrix
attached [Javed et al., 2000]. Double label
immuno¯uorescence microscopy of cells transi-
ently transfected with TLE and AML-1B cDNAs
shows that 40±70% of AML-1B foci associate
with TLE-1 and TLE-2 in both whole cell and
nuclear matrix- intermediate ®lament (NMIF)
preparations. In addition, an AML-3 protein
lacking the VWRPY motif or the NMTS does not
co-localize with TLE proteins [Javed et al.,
2000]. Thus, the AML1 proteins are compart-
mentalized in the nucleus in association with
proteins involved in transcriptional activation
and repression.

ETO, the AML1 Translocation Partner in t(8;21)
Leukemia, Encodes a Nuclear Matrix Attached

Transcriptional Regulator

A number of chromosomal alterations effect-
ing the AML1 gene have been detected in acute
leukemias, including the t(12;21), and the
t(8;21) [reviewed in Lutterbach and Hiebert,
2000]. In the t(8;21), associated with acute my-
elogenous leukemia, a portion of the AML1 gene
is joined to ETO [Miyoshi et al., 1991]. The
resultant hybrid product, AML-1/ETO retains
the AML1 DNA binding domain, but the C-
terminus of AML-1B is replaced with most of the
ETO protein [reviewed in Lutterbach and
Hiebert, 2000]. ETO does not bind to DNA but
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interacts with the nuclear hormone co-repres-
sors N-CoR and SMRT, mSin3A and mSin3B,
and histone deacetylases-1 and -2 [reviewed in
Lutterbach and Hiebert, 2000], suggesting that
ETO functions as a co-repressor (Table I). In
fact, ETO cooperates with the promyelocytic
leukemia zinc ®nger protein (PLZF) to repress
transcription [Melnick et al., 2000].

Because the t(8;21) fusion removes the AML-
1 NMTS, the localization of both ETO and AML-
1/ETO has been intensely investigated. ETO
contains a non-canonical NLS within AA 241±
280 [Odaka et al., 2000]. This region is both
suf®cient and required for nuclear localization
and the NLS is retained in AML-1/ETO [Odaka
et al., 2000]. Both ETO and AML-1/ETO are
tightly associated with the nuclear matrix [Le
et al., 1998; McNeil et al., 1999]. Using epitope-
tagged ETO for immuno¯ourescence studies in
whole cell and NM-IF preparations from tran-
siently transfected Saos-2 cells, ETO was loca-
lized to distinct sub-nuclear compartments
separate from those of AML-1B [McNeil et al.,
1999]. In addition, green ¯uorescent protein
(GFP) tagged ETO was both diffusely localized
and found in distinct sub-nuclear foci of living
cells and the punctate distribution was retained
in paraformaldehyde ®xed cells [Odaka et al.,
2000]. When ETO was analyzed for sub-nuclear
localization following transient transfection
and detected by using an antibody raised agai-
nst the zinc-®nger portion of ETO [Odoka et al.,
2000], the protein was again detected in nuclear
foci. ETO proteins deleted for the zinc-®nger
region formed these sub-nuclear foci to a greater
extent than wild-type protein (much less diffuse
staining was visible). Further analysis demon-
strated that an internal deletion of amino acids
114-216 precluded GFP-ETO from forming
nuclear foci [Odaka et al., 2000].

By using dual color ¯uorescence microscopy,
ETO-containing bodies did not co-localize with

either speckles containing SC35 or with PML
nuclear bodies in hematopoietic K562 cells
[Odaka et al., 2000]. However, ETO co-localizes
with Atrophin-1, the dentato-rubral and pal-
lido-luysian atrophy gene product, and may act
asan Atrophin-1 co-repressor [Wood etal., 2000]
(Table I). Atrophin/ETO-containing sub-nucl-
ear particles co-localize with mSin3A and
histone deacetylases, but not N-CoR [Wood
et al., 2000]. The ETO-containing structures
were of similar size and number to PML bodies,
but these foci were distinct from PML-contain-
ing structures [Wood et al., 2000].

The AML-1 NMTS is removed by the t(8;21),
and AML-1/ETO is directed to nuclear foci that
overlap with ETO, but not with AML-1B, when
transiently expressed [McNeil et al., 1999;
Odaka et al., 2000]. These results suggest that
in t(8;21)-containing leukemia, AML-1/ETO
will localize to ETO sub-nuclear addresses
(Table I). It is likely that this alteration in
nuclear address changes the number and type of
contacts that the fusion protein makes with co-
repressors. While this result might have been
anticipated from the localization of targeting
sequences in AML-1B and ETO, it was not
expected that expression of AML-1/ETO would
alter other sub-nuclear structures. However,
the average number of PML nuclear bodies was
increased in Saos-2 cells transiently made to
express AML-1/ETO, but not in cells expressing
AML1. Like AML1/ETO, ETO-expressing Saos-
2 cells also showed increases in the average
number of PML nuclear bodies per cell. Altho-
ugh the number of PML nuclear bodies incre-
ased per cell, the size of PML bodies remained
constant [McNeil et al., 2000]. Thus, it is pos-
sible that at least some of AML-1/ETO pheno-
types observed in t(8;21)-containing leukemic
cells result from reorganization of PML nuclear
bodies and perhaps other structures. Given that
AML-1/ETO binds co-repressors to repress the

TABLE I. Function and Localization of ETO Interacting Proteins

Protein Function Found in ETO foci

HDACs Transcriptional repression Yes
SMRT Transcriptional repression Yes
N-CoR Transcriptional repression Not known
mSin3A Transcriptional repression Yes
Atrophin 1 Transcriptional repression Yes

involved in neurodegenerative disease
PLZF Transcriptional repression Not known

involved in acute promyelocytic leukemia
AML-1/ETO Transcriptional repression Yes

results from the t(8;21)
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transcription of many AML-1-regulated genes,
it will be critical to determine whether re-
routing of intranuclear traf®cking is required
for repression or whether disruption of the nucl-
ear architecture contributes to the leukemic
phenotype in other ways.

SUMMARY

We are just beginning to understand the
spatial and functional organization of the nucl-
eus in the normal and diseased state. A number
of transcription regulatory factors are nuclear
matrix attached and localize to discrete sub-
nuclear compartments. One of the best studied
of these is PML, a protein required for the orga-
nization of the PML nuclear body. In t(15;17)
acute promyelocytic leukemia, PML bodies are
disrupted, suggesting that loss of the proper
localization of the protein components of PML
bodies is intimately linked to leukemogenesis.
In t(8;21)-containing leukemia, AML-1/ETO
is redirected away from AML-1 containing
nuclear foci and into ETO-containing nuclear
bodies. In contrast to the disruption of PML
bodies by PML-RARa, AML-1/ETO does not
appear to disrupt ETO nuclear bodies. Interest-
ingly, both AML-1/ETO and ETO effect the
number of PML nuclear bodies, suggesting that
in t(8;21)-containing leukemia there is modi®ed
traf®cking of PML and associated proteins. One
immediate issue is to de®ne the ETO NMTS,
and then to test its role in the biologic function of
AML-1/ETO. One possible drawback regarding
most of the data presented here concerning the
subnuclear localization of ETO and its interact-
ing proteins is that the experiments were car-
ried out with cells engineered to express the
proteins of interest. Clearly, reagents powerful
enough to look at endogenous proteins are
necessary for a clear description of how ETO
and AML-1/ETO traf®c in the nucleus. Ulti-
mately, it will be critical to understand the links
between transcriptional regulation and leuke-
mogenesis and sub-nuclear targeting of the
normal and chromosomal translocation fusion
proteins.
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